Fast Point Multiplication on Elliptic Curves through Isogenies
نویسندگان
چکیده
Elliptic curve cryptosystems are usually implemented over fields of characteristic two or over (large) prime fields. For large prime fields, projective coordinates are more suitable as they reduce the computational workload in a point multiplication. In this case, choosing for parameter a the value −3 further reduces the workload. Over Fp, not all elliptic curves can be rescaled through isomorphisms to the case a = −3. This paper suggests the use of the more general notion of isogenies to rescale the curve. As a side result, this also illustrates that selecting elliptic curves with a = −3 (as those recommended in most standards) is not restrictive.
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملASPECTS OF COMPLEX MULTIPLICATION Contents
1. Preview 2 Complex multiplication on elliptic curves over C 2 Traces of singular moduli 3 Class field theory 3 The Kronecker limit formula and Kronecker’s solution of Pell’s equation 4 Application to Diophantine equations (Villegas) 4 L-series and CM modular forms 5 Other topics 6 2. Complex Multiplication on Elliptic Curves over C 6 Elliptic Curves over C 6 Elliptic functions 7 Complex multi...
متن کاملFast algorithms for computing isogenies between elliptic curves
We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ` (` different from the characteristic) in time quasi-linear with respect to `. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘-function and related fu...
متن کاملIsogenies of Elliptic Curves: A Computational Approach
The study of elliptic curves has historically been a subject of almost purely mathematical interest. However, Koblitz and Miller independently showed that elliptic curves can be used to implement cryptographic primitives [13], [17]. This thrust elliptic curves from the abstract realm of pure mathematics to the preeminently applied world of communications security. Public key cryptography in gen...
متن کاملFamilies of Fast Elliptic Curves from ℚ-curves
We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducing Q-curves—curves over quadratic number fields without complex multiplication, but with isogenies to th...
متن کامل